Nervous System Worksheet 1

The thre	e basic functions of	of the ner	vous system are: _	<u>sensory inp</u>	<u>ut</u> ,
<u>integ</u>	<u>gration</u>	, and	<u>motor output</u>	•	
The nerv	vous system has tw	o major	parts:		
• The _	<u>central</u>	1	nervous system cor	nsists of the bra	in and spinal cords.
• The _	<u>peripheral</u>	1	nervous system con	tains all of the	nerves that branch o
from	the brain and spin	e.			
The peri	pheral nervous sys	stem also	has two parts:		
• The _	<u>sensory</u>	_ divisio	n picks up sensory	stimuli.	
• The _	<u>motor</u>	_ divisior	n sends directions fi	rom the brain to	o the muscles and
gland	ls.				
The mot	or division is furth	ner broke:	n down into:		
• The	somatic	nervo	ous system which co	ontrols vour ske	eletal muscles.
_			ous system which co	-	
_	tbeat, breathing, et		rus system winen et	mirois your my	voluntary functions
(IICar	iocai, orcaining, ci	C. <i>j</i> .			
The auto	onomic system is b	roken do	own further still:		
• The _	<u>sympathetic</u>		_ division mobilize	es the body into	action.
• The _	parasympathet	<u>:c</u>	_ division calms th	e body down.	
Neurons	are the <i>longes</i>	t	lived cells in	your body and	<i>cannot</i> be
replaced		-		, J <u>.</u>	
•					
All neur	ons have the same	basic str	ucture: <u>cell body</u>	<u>'</u> , _	<u>dendrites</u>
and	<u>axons</u> .				
<u>Sens</u>	<u>ory</u> nei	irons car	ry messages from s	ensory receptor	rs and sends them to
the centr	ral nervous system	•			
<u>Moto</u>	o <u>r</u> ne	urons car	rry messages away	from the centra	al nervous system and
out to th	e rest of the body.				

SC30/40S Page 1 of 2

10.	<u>Interneurons</u> transmit messages between the central and peripheral nervous				
	systems.				
11.	When a neuron is stimulated enough, it fires an <u>electrical</u> impulse down its				
	axon to its neighboring neurons.				
12.	A resting neuron has more negative charges on the <u>inside</u> of it than in the				
	extracellular space around it.				
	Neurons have a resting membrane potential because outside there are a bunch of positively				
	charged <u>sodium</u> ions. Inside there are positively charge				
	<u>potassium</u> ions, but also bigger, negatively charge proteins. Since there are				
	more positive charges inside than outside, the neuron is negatively charged, or				
	<u>polarized</u> . This is all orchestrated by the sodium-potassium pump.				
14.	When an axon is in the middle of an action potential, it can't respond to any other stimulus,				
	no matter how strong. This is called the <u>refractory period</u> .				
15.	The strength of an action potential is always the same. What does change is the				
	<u>frequency</u> .				
16	The grange is the meeting point between two neurons				
10.	The <u>synapse</u> is the meeting point between two neurons.				
17.	There are somewhere around <u>1000 trillion</u> synapses in your brain.				
18.	Your nerve cells have two main settings for communicating: <u>electrical</u>				
	(immediate) and <u>chemical</u> (take more time to be read).				
19.	Electrical synapses send an ion current directly from one neuron to another through				
	<u>gap junctions</u> . The signal is never converted into another form.				
20.	Chemical synapses are slower and more abundant. They use neurotransmitters that diffuse				
	across synaptic gaps. They can <u>convert</u> the signal, allowing for ways				
	to control it.				

SC30/40S Page 2 of 2