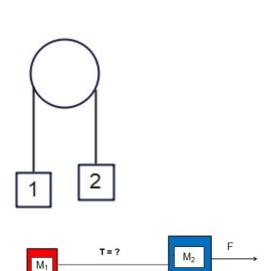

Physics Dynamics - 2 or 3 Body System - One Dimension

1. Two blocks are attached by a cord and pulled to the right with force F as shown to the right. If M_1 is 25 kg, M_2 is 17 kg and T is 28 N, then what is F?

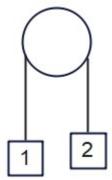


T = ?

M₁

 M_2

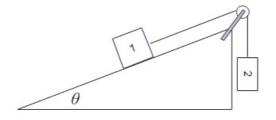
- 2. Two blocks are attached by a cord and pulled to the right with force F as shown to the right. If M_1 is 20 kg, M_2 is 14 kg and F is 58 N, then what is the tension (T) in the cord?
- 3. In the Atwood's machine shown to the right $M_1 = 16$ kg and $M_2 = 5$ kg. What is the tension in the string? [Counterclockwise rotation of the pulley is positive.]


4. Two blocks are attached by a cord and pulled to the right with force F as shown to the right. If M_1 is 21 kg, M_2 is 12 kg and F is 39 N, then what is the tension (T) in the cord?

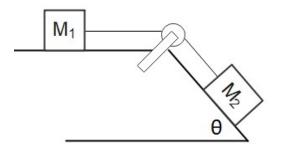
Dynamics - 2 or 3 Body System - One Dimension

5. Two blocks are attached by a cord and pulled to the right with force F as shown to the right. If M_1 is 26 kg, M_2 is 22 kg and T is 29.3 N, then what is F?

- 6. In the Atwood's machine shown to the right M₁ = 9 kg and M₂ = 9 kg. What is the acceleration of the system? [Counterclockwise rotation of the pulley is positive.]
- 1 2
- 7. In the Atwood's machine shown to the right $M_1 = 27$ kg and $M_2 = 18$ kg. If M_1 is initially 6.3 m from the floor, moving in the positive direction at 0.97 m/s, then how many seconds does it take for M_1 to reach the floor? [Counterclockwise rotation of the pulley is positive.]
- 1 2
- 8. In the Atwood's machine shown to the right $M_1 = 13$ kg and $M_2 = 23$ kg. What is the tension in the string? [Counterclockwise rotation of the pulley is positive.]

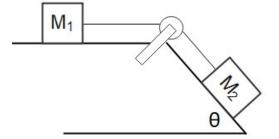


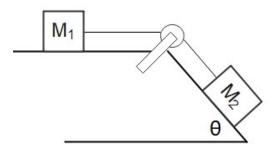
Page 3 of 7

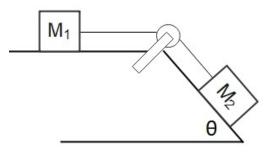

Physics

Dynamics - 2 or 3 Body System - One Dimension

9. Blocks 1 and 2 are connected by a string over a pulley. Block 1 rests on a frictionless ramp and has a mass which is 5 kg less than block
2. The ramp is inclined at 27°. If the acceleration of the system is 5.91 m/s², then what is the mass of block 2? Assume up the ramp to be positive.

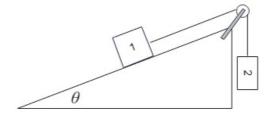

- 10. Blocks 1 and 2 are connected by a string over a pulley. Block 1 rests on a frictionless, horizontal surface and has a mass of 33 kg. Block 2 rests on a frictionless incline and has a mass of 36 kg. The angle of incline is 39°. If the system starts from rest then how many seconds are required for the system to be moving 6.6 m/s? Assume down the ramp to be positive.
- 11. Three blocks attached by cords are pulled to the right by force F = 130N. Block 1 has a mass of 20 kg, block 2 has a mass of 20 kg and block 3 has a mass of 11 kg. What is T_2 ?

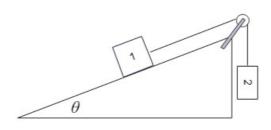




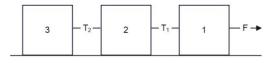
Dynamics - 2 or 3 Body System - One Dimension

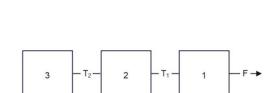
- 12. Blocks 1 and 2 are connected by a string over a pulley. Block 1 rests on a frictionless, horizontal surface and has a mass of 39 kg. Block 2 rests on a frictionless incline and has a mass of 44 kg. The angle of incline is 42°. What is the acceleration of the system? Assume down the ramp to be positive.
- 13. Blocks 1 and 2 are connected by a string over a pulley. Block 1 rests on a frictionless, horizontal surface and has a mass of 48 kg. Block 2 rests on a frictionless incline and has a mass of 50 kg. The angle of incline is 14°. If the system starts from rest then how many seconds are required for the system to be moving 1.77 m/s? Assume down the ramp to be positive.
- 14. Blocks 1 and 2 are connected by a string over a pulley. Block 1 rests on a frictionless, horizontal surface and has a mass of 30 kg. Block 2 rests on a frictionless incline and has a mass of 38 kg. The angle of incline is 19°. If the system starts from rest then how many seconds are required for the system to be moving 4.81 m/s? Assume down the ramp to be positive.




Dynamics - 2 or 3 Body System - One Dimension

15. Blocks 1 and 2 are connected by a string over a pulley. Block 1 rests on a frictionless ramp and has a mass of 7 kg. Block 2's mass is 12 kg. The ramp is inclined at 45°. What is the acceleration of the system. Assume up the ramp to be positive.


- 16. Three blocks attached by cords are pulled to the right by force F = 174N. Block 1 has a mass of 29 kg, block 2 has a mass of 29 kg and block 3 has a mass of 17 kg. What is T_1 ?
- 17. Blocks 1 and 2 are connected by a string over a pulley. Block 1 rests on a frictionless ramp and has a mass of 12.45 kg. Block 2's mass is 15 kg. The ramp is inclined at 14°. If block 2 is initially at rest and is 0.29 m above the floor then how many seconds does it take for it to reach the floor? Assume up the ramp to be positive.



Dynamics - 2 or 3 Body System - One Dimension

18. Three blocks attached by cords are pulled to the right by force F = 161N. Block 1 has a mass of 27 kg, block 2 has a mass of 23 kg and block 3 has a mass of 18 kg. What is T_2 ?

- 19. In the Atwood's machine shown to the right $M_1 = 29$ kg and $M_2 = 10$ kg. If M_1 is initially 11 m from the floor, moving in the positive direction at 0.36 m/s, then how many seconds does it take for M_1 to reach the floor? [Counterclockwise rotation of the pulley is positive.]
- 20. Three blocks attached by cords are pulled to the right by force F = 161N. Block 1 has a mass of 21 kg, block 2 has a mass of 29 kg and block 3 has a mass of 13 kg. What is T_1 ?

KEY

1.	47
2.	34.1
3.	74.7
4.	24.8
5.	54
6.	0
7.	2.09
8.	162.8
9.	8
10.	2.05
11.	28
12.	3.48
13.	1.46
14.	2.7
15.	3.64
16.	106.72
17.	0.37
18.	42.5
19.	2.07

20. 107.24