Proportions

- A proportion is an equation of the form $\frac{a}{b}=\frac{c}{d}$, where \qquad
$b \neq 0$ and $d \neq 0$ \qquad
- If we compare quantities with units, we must be sure we are comparing them in the right order.

$$
\begin{aligned}
& \text {-For example } \\
& \frac{32 \mathrm{~g}}{2 \mathrm{~mol}}=\frac{16 \mathrm{~g}}{1 \mathrm{~mol}}, \quad \frac{32 \mathrm{~g}}{2 \mathrm{~mol}}=\frac{1 \mathrm{~mol}}{16 \mathrm{~g}}
\end{aligned}
$$

- The following is a proportion because we know that the two fractions are equivalent to each other.

$$
\frac{1}{2}=\frac{3}{6}
$$

\qquad
\qquad

- But how else can we prove that both sides of the equation \qquad are equal?
- Get rid of the fractions by multiplying by the denominators. A process known as cross multiplication. \qquad
$(2 \cdot 6) \frac{1}{z}=\frac{3}{6}(2 \cdot 6)$
(6) $1=3(2)$
$6=6$
- We can use this method to solve for any missing variable.
- For example:
$\frac{x}{4}=\frac{2}{5}$
- Cross multiply
$5 x=2(4)$
- Solve for x.
$5 x=8$
$x=\frac{8}{5}=1.6$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- Another example
$\frac{2}{x}=\frac{4}{3}$
(3) $2=4 x$
$6=4 x$
$x=\frac{6}{4}=1.5$

