CIRCULAR MOTION WORKSHEET

$\mathrm{T}=$ time/rev
$v=2 \pi r / T$
$a_{c}=v^{2} / r$
$F_{c}=m \times 4 \pi^{2} r / T^{2}$
$\mathrm{F}_{\mathrm{c}}{ }^{=} \mathrm{ma}_{\mathrm{c}}$

1. A race car makes one lap around a track of radius 50 m in 9.0 s .
a) What is the average velocity?
b) What was the car's centripetal acceleration?
2. Normie Neutron swings a rubber ball attached to a string over his head in a horizontal, circular path. The piece of string is 1.5 m long and the ball makes 120 complete turns each minute.
a) What is the average velocity of the ball?
b) What is the ball's centripetal acceleration?
3. A car goes around a curve at $20 . \mathrm{m} / \mathrm{s}$. If the radius of the curve is 50 m , what is the centripetal acceleration of the car?
4. Professor Brown holds on to the end of the minute hand of a clock atop city hall. If the minute hand is 4.0 m long, what is the professor's centripetal acceleration?
5. A flea gets its thrills by riding on the outer edge of a golden oldies record album of radius 15 cm as it is being played with a rotational period of 1.8 seconds.
a) What is the flea's average speed?
b) What is the flea's centripetal acceleration?
6. A 0.100 kg mass is attached to a string 75 cm long and swings in a horizontal circle, revolving once every 0.80 s . Calculate:
a) the centripetal acceleration of the mass.
b) the tension in the string.
7. A 0.50 kg mass is attached to a string 1.0 m long and moves in a horizontal circle completing 1 revolutions in 0.5 seconds. Calculate:
a) the centripetal acceleration of the mass.
b) the tension in the string.
8. It takes a 900 . kg racing car 12.3 s to travel at a uniform speed around a circular racetrack of radius 90.0 m . What is the centripetal force acting on the car, and which force provides it?
9. A 2.0 kg object is tied to the end of a cord and whirled in a horizontal circle of radius 4.0 m completing 2 revolutions in 6 seconds. Determine:
a) the velocity of the object.
b) the acceleration of the object.
c) the pull of the object.
d) what happens if the cord breaks.
10. A steel beam is rotated in a horizontal plane to provide the centripetal acceleration for training pilots. If the pilot sits 2.0 m from the center of rotation, at what speed must he rotate to experience a horizontal centripetal acceleration of $78 \mathrm{~m} / \mathrm{s}^{2}$?
$\begin{array}{ll}\text { 1. a) } 35 \mathrm{~m} / \mathrm{s} & \text { b) } 24 \mathrm{~m} / \mathrm{s}^{2}\end{array}$
11. a) $19 \mathrm{~m} / \mathrm{s} \quad$ b) $240 \mathrm{~m} / \mathrm{s}^{2}$
12. $8.0 \mathrm{~m} / \mathrm{s}^{2}$
13. $0.044 \mathrm{~m} / \mathrm{s}^{2}$
$\begin{array}{ll}\text { 5. a) } 0.52 \mathrm{~m} / \mathrm{s} & \text { b) } 1.8 \mathrm{~m} / \mathrm{s}^{2}\end{array}$
14. a) $46 \mathrm{~m} / \mathrm{s} \quad$ b) 4.6 N
15. a) $9.9 \mathrm{~m} / \mathrm{s}^{2} \quad$ b) 4.9 N
16. $2.11 \times 10^{4} \mathrm{~N}$, friction
$\begin{array}{llll}\text { 9. a) } 8.4 \mathrm{~m} / \mathrm{s} & \text { b) } 17.6 \mathrm{~m} / \mathrm{s}^{2} & \text { c) } 35 \mathrm{~N} & \text { d) object flies off in a straight line tangent to }\end{array}$ the circular path at $8.4 \mathrm{~m} / \mathrm{s}$
17. $12 \mathrm{~m} / \mathrm{s}$
