

Conductivity Electrodes can be placed in the reaction mixture and the increase/decrease in conductivity of the products can be used to measure reaction rate

• This method is usually used when nonionic reactants form ionic products

Reaction Rate

 Reaction rate can be calculated by finding the change in formation of product over time, or by finding the change in consumption of a reactant over time.

$$Mathematically$$

$$rate = -\frac{\Delta[N_2]}{\Delta t}$$
Therefore...
$$rate = -\frac{\Delta[N_2]}{\Delta t} = -\frac{1}{3}\frac{\Delta[H_2]}{\Delta t} = \frac{1}{2}\frac{\Delta[NH_3]}{\Delta t}$$

