Kinetics

Reaction Kinetics

- The speed of a chemical reaction (reaction rate)
- Operational definition
- How fast or slow a reactant disappears or a product forms

Reaction Rates

- Reaction rate is described as a change in an observable property over time.
- The observable property should be selected based upon what can be measured in a laboratory
- Color change, temperature change, pressure change, pH , conductivity, appearance of a new substance
- Mathematically, we describe reaction rate as change per unit time

$$
\text { Average rate }=\frac{\Delta \text { quantity }}{\Delta t}
$$

Pressure

- Change in pressure can be measured with a manometer
- A simpler method would be to use a gas syringe

pH

- pH is an indication of how acidic or basic a solution is
- A pH meter can measure the change in acidity over time
- This data can be used to determine the concentration of hydrogen (hydronium) ions over time

Color

- A spectrometer can be used to measure the color given off or absorbed by a reactant or product over time

Temperature

- Temperature changes can be monitored with a thermometer

Conductivity

- Electrodes can be placed in the reaction mixture and the increase/decrease in conductivity of the products can be used to measure reaction rate
- This method is usually used when nonionic reactants form ionic products

Reaction Rate

- Reaction rate can be calculated by finding the change in formation of product over time, or by finding the change in consumption of a reactant over time.

Calculating Reaction Rates

- Consider the reaction: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$

OO

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \quad \rightarrow \quad 2 \mathrm{NH}_{3}
$$

- The rate of consumption of H_{2} is $3 x$ that of N_{2}
- The rate of production of NH_{3} is $2 x$ the rate of consumption of N_{2}
- N_{2} is consumed at $1 / 3$ the rate of H_{2} and $1 / 2$ the rate of NH_{3}

Mathematically

$$
\text { rate }=-\frac{\Delta\left[\mathrm{N}_{2}\right]}{\Delta t}
$$

Therefore...

$$
\text { rate }=-\frac{\Delta\left[\mathrm{N}_{2}\right]}{\Delta t}=-\frac{1}{3} \frac{\Delta\left[\mathrm{H}_{2}\right]}{\Delta t}=\frac{1}{2} \frac{\Delta\left[\mathrm{NH}_{3}\right]}{\Delta t}
$$

Example

- For the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$, if the hydrogen reacts at a rate of $1.5 \mathrm{~mol} / \mathrm{Ls}$ what is the rate of formation of ammonia?

$$
\begin{aligned}
-\frac{1}{3} \frac{\Delta\left[\mathrm{H}_{2}\right]}{\Delta t} & =\frac{1}{2} \frac{\Delta\left[\mathrm{NH}_{3}\right]}{\Delta t} \\
-\frac{1}{3}\left(-1.5 \frac{\mathrm{~mol}}{\mathrm{Ls}}\right) & =\frac{1}{2} \frac{\Delta\left[\mathrm{NH}_{3}\right]}{\Delta t} \\
\frac{\Delta\left[\mathrm{NH}_{3}\right]}{\Delta t} & =1.0 \frac{\mathrm{~mol}}{\mathrm{Ls}}
\end{aligned}
$$

