Stoichiometry

Jeremias Benjamin Richter, 1792

- Stoichiometry is the science of measuring the quantitative proportions or mass ratios in which chemicals elements stand to one another

What is Stoichiometry?

- Stoichiometry is the part of chemistry that studies amounts of substances that are involved in reactions
- All reactions are dependent on how much stuff you have
- Stoichiometry helps you figure out how much of a compound you will need or maybe how much you started with.
- The coefficients used in all chemical equations show the relative amounts of each substance present
- This amount can represent either the relative number of molecules, or the relative number of moles
- The coefficients can also represent conservation of mass or volumes of gas

Example 1

The reaction: $3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
a) How many moles of NH_{3} would be produced from the reaction of 6 mol $\mathrm{H}_{2}(\mathrm{~g})$ and excess $\mathrm{N}_{2}(\mathrm{~g})$?
b) How many moles of $\mathrm{N}_{2}(\mathrm{~g})$ would be needed to react with exactly $9 \mathrm{~mol}_{\mathrm{H}_{2}}(\mathrm{~g})$?
c) How many moles of H_{2} and N_{2} would be needed to produce $0.4 \mathrm{~mol} \mathrm{NH}_{3}$?

Ex. 1 (a)

$$
\begin{aligned}
& \frac{6}{3} \mathrm{H}_{2}=\frac{x}{2} \mathrm{NH}_{3} \\
& x=\frac{6 \times 2}{3}=4
\end{aligned}
$$

Ex. 1 (b)

$$
\begin{aligned}
& \frac{9}{3} \mathrm{H}_{2}=\frac{x}{1} \mathrm{~N}_{2} \\
& x=\frac{9 \times 1}{3}=3
\end{aligned}
$$

Ex. 1 (c)

$$
\begin{array}{ll}
\frac{x}{3} \mathrm{H}_{2}=\frac{0.4}{2} \mathrm{NH}_{3} & \frac{x}{1} \mathrm{~N}_{2}=\frac{0.4}{2} \mathrm{NH}_{3} \\
x=\frac{3 \times 0.4}{2}=0.6 & x=\frac{1 \times 0.4}{2}=0.2
\end{array}
$$

Example 2

- The reaction: $3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
- Calculate the number of moles of ammonia produced with 12.0 g of hydrogen gas and an unlimited amount of nitrogen.

$$
\begin{aligned}
\mathrm{H}_{2}: \frac{12.0 \mathrm{~g}}{2 \mathrm{~g} / \mathrm{mol}}=6 \mathrm{~mol} \quad \frac{6}{3} \mathrm{H}_{2} & =\frac{x}{2} \mathrm{NH}_{3} \\
x & =4 \mathrm{~mol}
\end{aligned}
$$

Example 3

- The reaction: $3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
- Calculate the mass of ammonia produced from 1.2 g of hydrogen gas reacting with an excess of nitrogen.

$$
\begin{array}{r}
\mathrm{H}_{2}: \frac{1.2 \mathrm{~g}}{2 \mathrm{~g} / \mathrm{mol}}=0.6 \mathrm{~mol} \quad \frac{0.6}{3} \mathrm{H}_{2}=\frac{x}{2} \mathrm{NH}_{3} \\
x=0.4 \mathrm{~mol}
\end{array}
$$

$$
\mathrm{NH}_{3}=(14 \mathrm{~g})+3(1 \mathrm{~g})=17 \mathrm{~g} / \mathrm{mol}
$$

$$
0.4 \mathrm{~mol}(17 \mathrm{~g} / \mathrm{mol})=6.8 \mathrm{~g}
$$

Example 4

- If 34.6 g of Zn are reacted with an excess of hydrochloric acid at standard pressure, what is the temperature of the hydrogen gas produced if it occupies a 2.00 L container?

$$
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

$$
\begin{gathered}
\mathrm{Zn}: \frac{34.6 \mathrm{~g}}{65.4 \mathrm{~g} / \mathrm{mol}}=0.53 \mathrm{~mol} \quad \frac{0.53}{1} \mathrm{Zn}=\frac{x}{1} \mathrm{H}_{2} \\
x=0.53 \mathrm{~mol} \\
\text { at STP } 1 \mathrm{~mol}=22.4 \mathrm{~L} \\
0.53 \mathrm{~mol}=x \\
x=11.872 \mathrm{~L} \\
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
\frac{(1 \mathrm{~atm})(11.872 \mathrm{~L})}{273 \mathrm{~K}}=\frac{(1 \mathrm{~atm})(2.00 \mathrm{~L})}{T_{2}}
\end{gathered}
$$

$$
T=46 \mathrm{~K}=-227^{\circ} \mathrm{C}
$$

Example 5

- What quantity of heat is produced in the complete combustion of 60.16 g of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$, if the heat of combustion is 1560 $\mathrm{kJ} / \mathrm{mol}$ of ethane?

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{6}: 2(12 \mathrm{~g})+6(1.01 \mathrm{~g})=30.06 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{C}_{2} \mathrm{H}_{6}: \frac{60.16 \mathrm{~g}}{30.06 \mathrm{~g} / \mathrm{mol}}=2.0 \mathrm{~mol} \\
& 1 \mathrm{~mol}=1560 \mathrm{~kJ} \\
& 2.0 \mathrm{~mol}=x \\
& x=3120 \mathrm{~kJ}
\end{aligned}
$$

Limiting Reactants

- A recipe for 2 dozen cookies requires $1 / 2$ cup of butter and 3 cups of flour
- If you have 1 cup of butter and 8 cups of flour, how many cookies can you make?
- 4 dozen
- You are limited by the amount of butter that you have
- In chemical reactions, the same is true
- We are limited to the amount of products we get by the amount of reactants that we have
- Usually, one of those reactants will control how much product is produced
- This reactant is known as the limiting reactant (or reagent)
- Note: this is not necessarily the reactant with the smallest number of moles

Example 1

- The reaction: $\mathrm{C}_{3} \mathrm{H}_{8}+10 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
- If we start with 14.8 g of $\mathrm{C}_{3} \mathrm{H}_{8}$ and 3.44 g of O_{2}, determine the limiting reactant.
$\mathrm{C}_{3} \mathrm{H}_{8}: \frac{14.8 \mathrm{~g}}{44.08 \mathrm{~g} / \mathrm{mol}}=0.3358 \mathrm{~mol} \quad \mathrm{O}_{2}: \frac{3.44 \mathrm{~g}}{32 \mathrm{~g} / \mathrm{mol}}=0.1075 \mathrm{~mol}$

$$
\begin{gathered}
\frac{0.3358}{1} \mathrm{C}_{3} \mathrm{H}_{8}=\frac{x}{10} \mathrm{O}_{2} \\
x=3.358 \mathrm{~mol}
\end{gathered}
$$

Since we only have $0.1075 \mathrm{~mol} \mathrm{O}_{2}, \mathrm{O}_{2}$ is the limiting reactant

Example 2

- The reaction: $4 \mathrm{Al}_{2} \mathrm{O}_{3}+9 \mathrm{Fe} \rightarrow 3 \mathrm{Fe}_{3} \mathrm{O}_{4}+8 \mathrm{Al}$
- If 25.4 g of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is reacted with 40.2 g of Fe , determine the limiting reactant.

$$
\begin{gathered}
\mathrm{Al}_{2} \mathrm{O}_{3}: \frac{25.4 \mathrm{~g}}{102 \mathrm{~g} / \mathrm{mol}}=0.249 \mathrm{~mol} \quad \mathrm{Fe}: \frac{40.2 \mathrm{~g}}{55.8 \mathrm{~g} / \mathrm{mol}}=0.720 \mathrm{~mol} \\
\frac{0.249}{4} \mathrm{Al}_{2} \mathrm{O}_{3}=\frac{x}{9} \mathrm{Fe} \\
x=0.560 \mathrm{~mol}
\end{gathered}
$$

Since we have $0.720 \mathrm{~mol} \mathrm{Fe}, \mathrm{Al}_{2} \mathrm{O}_{3}$ is the limiting reactant

Note

- The limiting reactant is used to determine the amount of products that are produced.

